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Abstract

Pulse-coupled systems such as spiking neural networks exhibit nontrivial
invariant sets in the form of attracting yet unstable saddle periodic orbits
where units are synchronized into groups. Heteroclinic connections between
such orbits may in principle support switching processes in these networks
and enable novel kinds of neural computations. For small networks of
coupled oscillators, we here investigate under which conditions and how
system symmetry enforces or forbids certain switching transitions that may be
induced by perturbations. For networks of five oscillators, we derive explicit
transition rules that for two cluster symmetries deviate from those known from
oscillators coupled continuously in time. A third symmetry yields heteroclinic
networks that consist of sets of all unstable attractors with that symmetry and
the connections between them. Our results indicate that pulse-coupled systems
can reliably generate well-defined sets of complex spatiotemporal patterns that
conform to specific transition rules. We briefly discuss possible implications
for computation with spiking neural systems.

PACS numbers: 05.45.Xt, 89.75.−k, 87.18.Sn

1. Introduction

Heteroclinic connections among saddle states are known to support nontrivial switching
dynamics in networks of units coupled continuously in time [1–5]. Interesting recent work
furthermore suggests that heteroclinic networks in state space may be used to encode a large
number of spatiotemporal patterns if the transition between different states is controllable [6].
Supplementing such systems with certain additional features may thus enable a new kind of
computation [7].
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Networks of pulse-coupled oscillators, which model, e.g., the dynamics of spiking neural
networks, constitute hybrid systems that are very distinct from systems coupled continuously
in time. In pulse-coupled hybrid systems pulses interrupt the otherwise smooth time evolution
at discrete event times when pulses are sent or received. Such networks may exhibit unstable
attractors [8], unstable saddle periodic orbits that are attractors in the sense of Milnor [9].
Recent works indicate that unstable attractors may generically occur in systems with symmetry
[10, 11] and that such saddle periodic orbits may be connected to heteroclinic networks in a
standard way, but with some anomalous features [12, 13]. In particular, due to the attractor
nature of the periodic orbits, switching among saddles requires external perturbations. It was
known before that in non-hybrid systems with non-attracting saddles, such perturbations may
in principle direct the switching path. In this work, we study under which conditions and
precisely how small controlled perturbations can exploit heteroclinic connections in pulse-
coupled systems to support switching processes among saddle states, a key prerequisite for
computation by heteroclinic switching.

The results may be of particular relevance for neural systems where pulses are electric
action potentials (spikes) generated by neurons because spatiotemporal switching patterns of
spikes have been suggested to underlie information processing [14, 15].

This paper is divided into four main sections. After introducing the model and explaining
our analytical approach in section 1, we present in section 2 the most persistent attractors
and their symmetries. In section 3, we derive the dynamic response of the system to single-
oscillator perturbations and provide a local stability analysis. Finally, we conclude discussing
the relation between switching processes in the pulse-coupled systems considered to those
in systems coupled continuously in time. We also briefly discuss potential implications for
neural coding and paths to future investigations.

2. Pulse-coupled network

Consider a network of N oscillators that are connected homogeneously all-to-all without self-
connections through delayed pulse couplings. The state of each oscillator i ∈ {1, . . . , N} at
time t is specified by a single phase-like variable φi(t) [16]. In the absence of interactions, its
dynamics is given by

dφi

dt
= 1, 0 � φi � 1. (1)

When oscillator i reaches a threshold, φi(t
−) = 1, its phase is reset to zero, φi(t) = 0, and the

oscillator is said to send a pulse. Such pulse is sent to all other oscillators which receive this
signal after a delay time τ . The incoming signal induces a phase jump

φi(t) = Hε(φi(t
−)) = U−1[U(φi(t

−)) + ε], (2)

which depends on the instantaneous phase φi(t
−) of the post-synaptic oscillator and the

excitatory coupling strength ε > 0. The phase dependence is determined by a twice
continuously differentiable potential function U(φ) that is assumed to be strictly increasing
(U ′(φ) > 0), concave down (U ′′(φ) < 0) and normalized such that U(0) = 0, U(1) = 1. As
shown in [8, 17], this phase dynamics is equivalent to the ordinary differential equations

dVi

dt ′
= f (Vi) + Si(t

′), (3)
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where

Si(t
′) =

N∑
j=1
j �=i

∑
k∈Z

εδ(t − τ ′ − t ′jk) (4)

is a sum of delayed δ-currents induced by presynaptic oscillators. Oscillator j sends its kth
pulse at time t ′jk whenever its phase variable crosses threshold, Vj (t

′−
jk ) � 1; thereafter, it is

instantaneously reset, Vj (t
′
jk) → 0. The kth pulse of oscillator j is received by i after a delay τ ′.

The positive function f (V ) > 0 yields a free (Si(t
′) ≡ 0) solution Vi(t

′) := V (t ′) = V (t ′+T0)

of intrinsic period T0. The above function U(φ) is related to this solution via

U(φ) = V (φT0), (5)

defining a natural phase φ by rescaling the time axis, t = t ′/T0 and τ = τ ′/T0.

We focus on the specific form U(φi) = UIF(φi) = Ii

γ
(1 − e−φiTIF) that represents the

integrate-and-fire oscillator defined by f (V ) = I − γV . Here I > 1 is a constant external
input and TIF = 1

γ
log

(
1 − γ

I

)−1
is the intrinsic period of an oscillator. Any U(φ) sufficiently

close to UIF(φ) gives qualitatively similar results.
After defining the dynamics of the network elements, we define its collective state as a

phase vector

φ = (φ1, φ2, . . . , φN), (6)

where each φi describes the phase of oscillator i. Their dynamics is governed by (1) and (2).
The difference in phase among them will define the macroscopic states of the network, as
explained in the following section.

The event-based update presented above brings two main advantages: it yields exact
analytical solutions of state space trajectories and substantially reduces the simulation time
compared to numerical integration with fixed small time steps.

3. Periodic orbit dynamics and symmetries

Here we define and explicitly study the dynamics of partially synchronized states, periodic
orbits where groups of oscillators are identically synchronized into clusters, for three main
symmetries of N = 5 oscillators. The analysis reveals mechanisms of perturbation-induced
switching transitions that critically depend on the local stability properties of cluster periodic
orbits. As we show below, stability in turn is determined by whether a cluster receives only
sub-threshold input during one period (‘unstable’ cluster) or it also receives supra-threshold
input (‘stable’ cluster), the only two options available. Thus, similar switching mechanisms
for a given symmetry will prevail also for larger N, cf [17], and contribute to much more
complex saddle state transitions, cf figure 6. As shown in the last section, when a constant
external input I to a single oscillator i is sufficiently strong to drive the membrane potential to
cross its threshold (U ′ > 0), the potential dynamics become periodic with period T0. It was
known before that networks of such pulse-coupled oscillators may exhibit different invariant
states including partially synchronized states [5, 8, 9, 18, 20].

To explore the possible unstable attractors we systematically varied the parameters and
the initial conditions for our system and found numerically that three clustered states present
those state symmetries most persistent to perturbations. Two of these states are composed of
two clusters, with permutation symmetries S3 × S2 and S4 × S1, respectively; another one is
composed of two clusters and one single element, with the permutation symmetry S2 ×S2 ×S1.
The event-based analyses of these states are based on the return maps that are presented in
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detail in tables B1, B3, B4 and B6. For each of these three cluster periodic orbits, the event
sequence of sending and receiving pulses fully defines the type of periodic orbit such that the
analytical conditions for the existence of a family of such orbits can be directly read from these
tables. In particular, these three families of periodic orbits exist for an open set of parameters
close to the three examples numerically specified in tables B2, B5 and B7. The existence
conditions for each periodic orbit naturally imply that the phases of all oscillators exactly
return to the same value after a fixed period; at the same time, the predefined event sequence
must be kept.

Throughout this work, we represent the dynamical states relative to the symmetries
S3 × S2, S4 × S1 and S2 × S2 × S1, respectively, by the phase vectors

φ = (a, a, a, b, b), (7a)

φ = (a, a, a, a, b), (7b)

φ = (a, a, b, b, c), (7c)

where each element represents one oscillator and the letters indicate to which cluster it belongs.
In these periodic orbits, the differences in phase (a − b), (a − c) and (b − c) will change in
time in a periodic manner, while the cluster configuration remains the same. In this notation,
the elements labeled as ‘a’ belong to an unstable cluster, ‘b’ to a stable cluster, while ‘c’
represents a single element that reacts stably to small perturbations (see below).

It is important to emphasize that this system exhibits symmetric connections and that
the parameters, I, γ, ε and τ , are global (see section 2). As a consequence, the initial
condition controls the final attractor and determines which of the permutation-equivalent
states is obtained. By the same symmetry argument, the number of permutation-equivalent
configurations for each state symmetry is given by the number of ways we can form the vectors
presented above, which results in 10, 5 and 30 states, respectively. In the following section,
we study the stability of these cluster states and the possible state transitions among them in
the presence of small perturbations.

4. Stability and switching properties

In this section, we will study, case by case, the dynamics and stability of cluster periodic orbits
presented in the last section. First, we show that these periodic orbits actually are unstable
attractors, and later we study the possible transitions between different states in response to
small perturbations.

To study the local stability of these attractors, we introduce a perturbation vector

δ(n) = (δ2(n), δ3(n), δ4(n), δ5(n)) (8)

that has four components, since only the relative phases among the oscillators are relevant
(δ1(n) ≡ 0). The analysis presented here consists of a study of the temporal evolution of this
perturbation vector at each cycle. Thus,

δi(n) := φi(t1,N ) − φ∗
i (t) (9)

are the perturbations to phases on the periodic orbit just after oscillator one has sent its nth
pulse and been reset, i.e. δi ≡ 0.

After a small enough initial perturbation that is added to the phase vector at some point
of the unperturbed dynamics, the temporal evolution of the perturbation vector is defined as
the difference between this perturbed vector after one cycle of the system dynamics and the
unperturbed phase vector at the same time. Analytically tracking the periodic orbit dynamics
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(cf tables B1, B4 and B6) yields the perturbation vector after one cycle as a function of the
perturbation in the previous cycle,

δ(n + 1) = F (δ(n)), (10)

which can be linearly approximated by

δ(n + 1)
.= Jδ(n), (11)

where J is the Jacobian matrix at δ(n) = 0, describing the local dynamics.
After analyzing the local stability properties, we study nonlocal effects in response to

single-oscillator perturbations. The procedure consists of perturbing only one oscillator at
each time. We consider negative perturbations, instantaneous decrements on the phase, and
positive ones, instantaneous increments on the phase. When possible, transition diagrams are
included.

4.1. Clustered state S3 × S2

For the clustered state S3 × S2, we have the temporal evolution for the vector δ in one cycle,
(cf tables C1 and B1) assuming δ2 < δ3 and δ4 < δ5 given by

δ(n + 1) = φ − (0, 0, A,A), (12)

where φ is the phase vector given by the last row of table C1, and the vector (0, 0, A,A)

represents the unperturbed cycle (see table B1). By (11) and (12) we obtain the following
Jacobian matrix:

∂δ(n + 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=

⎛
⎜⎜⎝

α 0 0 0
j21 β 0 0
γ j32 0 0
γ j42 0 0

⎞
⎟⎟⎠ , (13)

where α, β and γ are positive reals larger than 1, j32 and j42 are positive, and j21 is much
smaller than the other elements (for analytical expressions of the partial derivatives refer to
appendix A). This matrix has two zero eigenvalues with eigenvectors that correspond to the
directions of δ4 and δ5 and two nonzero eigenvalues given by

λ1 = α = [−1 + [1 + H ′
ε(τ )]H ′

ε(Hε(τ ))]H ′
2ε(τ + H2ε(τ )) (14)

λ2 = β = [−1 + 2H ′
ε(τ )]H ′

ε(Hε(τ ))H ′
2ε(τ + H2ε(τ )), (15)

where

H ′
ε(φ) = ∂

∂φ
U−1(U(φ) + ε). (16)

Here λ1 and λ2 are larger than 1 (see lemma 1), noting that all terms are due to sub-
threshold events. Thus, a perturbation can effectively disturb the system in two different
possible directions, showing that the cluster S2 is stable and the cluster S3 is unstable.

Lemma 1. If Hε(φ) given by (2) mediates a sub-threshold reception event and ε > 0, U ′(φ) >

0 and U ′′(φ) < 0, then H ′
ε(φ) > 1.

Proof. Assume ε > 0. By definition

H ′
ε(φ) = ∂

∂φ
U−1(U(φ) + ε) = U ′(φ)

U ′(U−1(U(φ) + ε))
= U ′(φ)

U ′(Hε(φ))
.
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Figure 1. Example of perturbation-induced switching in a S3 × S2 state set. The response of the
system to a sequence of five negative single oscillator perturbations preserving a S3 × S2 clustered
symmetry (τ = 0.31, ε = 0.025, I = 1.04, γ = 1). The phases of all oscillators are plotted at
the moment when oscillator 1 is reset, each color representing the phase of one oscillator. There
are transitions through two steps, where in a first moment the cluster S3 is unstable, after one
perturbation (as shown by the second and fourth perturbation) it reaches a new configuration with
the cluster S2 in a unstable phase position, a second perturbation (as shown in the first, third and
fifth perturbations) is needed to put the system in the initial phase difference again, maintaining
the cluster components but changing its stability. The symmetry of the unstable attractors is
preserved. The sequence of states given by the plateaus are (a, a, b, b, a)∗ → (a, a, b, b, a) →
(b, b, a, a, a)∗ → (b, b, a, a, a) → (a, a, a, b, b)∗ → (a, a, a, b, b), where the star indicate the
states where S2 is in a unstable phase.

Since U ′(φ) is a monotonic decreasing function and Hε(φ) > φ, we have U ′(φ) > U ′(Hε(φ))

for any Hε(φ), and consequently H ′
ε(φ) > 1. �

Now we describe the long-term effect of a single-oscillator perturbation to the unstable
cluster S3. A negative perturbation to one of the elements on the unstable cluster
(φ+ = (a, a, a − δ3, b, b)) puts one of its elements phase slightly behind; then the initial
stable cluster S2 begins to receive an additional pulse just after it is reset increasing its relative
phase in each cycle, and thus approaching the phase of the elements in the originally stable
cluster. After some cycles it finally joins that cluster by a simultaneous reset, forming a new
S3 × S2 clustered state. This switching process is illustrated just after the second and fourth
perturbations in figure 1. The final state has the same symmetry as the initial state, but has
different stability properties: whereas the orbit is stable to splitting the S3 cluster, it is unstable
to splitting the S2 cluster and upon perturbation resynchronizes and shifts in phase with respect
to the cluster S3 (see table B3). A further perturbation to the cluster S2 does not change the
elements of each cluster but just returns the system to the initial phase difference, as illustrated
in the first, third and fifth perturbations in figure 1.

Intriguingly, positive perturbations (φ+ = (a, a, a + δ3, b, b)) result in a completely
different dynamics, as can be seen in figure 2 which presents a sequence of three negative and
two positive perturbations. A positive perturbation puts just one oscillator from the unstable
cluster ahead that now increases its phase in relation to its original cluster in each cycle till it
begins to be reset by pulses coming from the originally stable cluster. The original S2 cluster
changes its phase to conform with this new pulse configuration, but has still been reset by
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Figure 2. Example of symmetry change by perturbation-induced switching. A sequence of three
negative and two positive single oscillator perturbations (same parameters as in figure 1). Showing
that the positive perturbations split the unstable cluster until the system reach some periodic orbit.
The symmetry is not preserved.

pulses coming from the two elements left on the unstable cluster. Thus, the S3 cluster splits
into two clusters, and the new configuration becomes S2 × S2 × S1. A further perturbation
puts the system in a stable cyclic state.

Hence the symmetry S3 × S2 is not preserved upon a general perturbation. However,
simulations suggest that if we only consider negative single oscillator perturbations, or one
negative perturbation with a larger magnitude than the others, the symmetry is preserved, and
it is possible to write a transition rule

(a − δ1, a, a, b, b) → (a, b, b, a, a), (17)

that permits us to know which will be the next state after one perturbation.

4.2. Clustered state S4 × S1

Considering now the S4 × S1 symmetry, assuming δ2 < δ3 < δ4 and δ5 > 0, in a procedure
analogous to that in the last section, we obtain the following Jacobian matrix (see last row of
tables C2 and B4):

∂δ(n + 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=

⎛
⎜⎜⎝

α 0 0 0
j21 β 0 0
j31 j32 γ 0
j41 j42 θ 0

⎞
⎟⎟⎠ . (18)

Here α, β, γ and θ are larger than 1, j41 and j42 are positive and j21, j31 and j32 are much
smaller than the other elements (see appendix A). This matrix has one zero eigenvalue,
corresponding to the single element represented by S1 and three nonzero eigenvalues given by

λ1 = α = [−1 + [1 + H ′
ε(τ )H ′

ε(Hε(τ ))]H ′
ε(H2ε(τ ))]H ′

ε(τ + H3ε(τ )), (19)

λ2 = β = [−1 + [1 + H ′
ε(τ )]H ′

ε(Hε(τ ))]H ′
ε(H2ε(τ ))H ′

ε(τ + H3ε(τ )), (20)

λ3 = γ = [−1 + 2H ′
ε(τ )]H ′

ε(Hε(τ ))H ′
ε(H2ε(τ ))H ′

ε(τ + H3ε(τ )). (21)
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Figure 3. Example of perturbation-induced switching in a S4 × S1 state set. A sequence of
four positive single oscillator perturbations preserving a S4 × S1 clustered state (τ = 0.27, ε =
0.015, I = 1.1, γ = 1). The phase of all oscillators are plotted each time oscillator 1 is reset,
each color represents the phase of one oscillator. The perturbed oscillator leaves the cluster S4
and replaced the S1 oscillator, that join the cluster S4, preserving the symmetry. The sequence
of states corresponding to the plateaus are (a, a, a, a, b) → (a, b, a, a, a) → (a, a, b, a, a) →
(a, a, a, b, a).

Using the same argument as in the last section (see lemma 1), these three eigenvalues are
necessarily larger than 1 (λ1, λ2, λ3 > 1), showing the instability of the cluster S4.

Again we study the effect of single-oscillator perturbations. As can be seen in figure 3,
positive perturbations to an element of the unstable cluster S4 put one element from the unstable
group ahead. This difference in phase will increase each cycle, since pulses received at larger
phases more strongly shift the oscillator’s phase; at the same time, the S1 element is not only
reset by the other oscillators pulses, but also receives additional pulses that makes its phase
approach the unstable cluster. After some cycles, the element S1 joins the original unstable
cluster, forming a new S4 cluster, while the perturbed oscillator forms the new S1, returning the
system to its original phase difference and symmetry, but with different elements composing
the clusters.

When a negative perturbation is applied (see figure 4) the element perturbed is put
backward, and as before the elements ahead increase the difference in phase in relation to
the perturbed element; at each cycle, after being reset, the original S1 element receives an
additional pulse coming from the perturbed element, increasing its phase. After some cycles,
this increase makes the S1 element to join the perturbed element, forming a new cluster S2.
The new configuration becomes S3 × S2, where S3 is unstable. A second perturbation to the
S3 cluster moves the perturbed element to the cluster S2. A last perturbation can either put
the system in its initial configuration or split the cluster into two; depending on the position
on the periodic orbit it is applied. The symmetry of this state is obviously not preserved
for negative perturbations, and computer simulations indicate that more general perturbations
bring an even more complicated switching dynamics due to the large number of elements in
the unstable cluster.
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Figure 4. Example of symmetry change by perturbation-induced switching. A sequence of three
negative single oscillator perturbations for the same parameter used in figure 3. The perturbed
oscillator joins the S1 oscillator, forming a S2 cluster, new perturbations led first to an S3 × S2
configuration and later to split the clusters reaching a stable attractor. The symmetry is not
preserved.

Considering only single positive perturbations, we can state a transition rule between two
states when subject to a single positive perturbation,

(a + δ1, a, a, a, b) → (b, a, a, a, a). (22)

Under these considerations, the resulting transition diagram is a fully connected one, and it
is possible to jump from one equivalent permutation state to any other one applying only one
perturbation.

4.3. Clustered state S2 × S2 × S1

For the symmetry S2 × S2 × S1, assuming δ3 < δ4 and δ2, δ5 > 0, we have the following
Jacobian matrix:

∂δ(n + 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=

⎛
⎜⎜⎝

α 0 0 0
β 0 0 0
β 0 0 0
γ 0 0 0

⎞
⎟⎟⎠ , (23)

where α > β > γ > 0 (see appendix A), cf tables C3 and B4. This matrix has three zero
eigenvalues and only one nonzero eigenvalue given by

λ1 = α = H ′
ε(τ

′ + Hε(τ − τ ′ + H2ε(τ
′)))[−1 + H ′

ε(τ − τ ′ + H2ε(τ
′))[1 + H ′

2ε(τ
′)]], (24)

which is larger than 1 accordingly to lemma 1. The fact that there is only one eigenvalue
and that it is larger than 1 not only shows that there is only one unstable cluster, but also that
perturbations change only the difference in phase between the two elements on this cluster.
As a result, any general perturbation can be mapped to a single-oscillator perturbation.

Differently from the last two considered symmetries, we here have one single element,
one stable S2 clusters and one symmetric unstable S2 cluster. When perturbed, the initial
unstable cluster S2 splits into two, the additional pulse received now by the initial single S1
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Figure 5. Example of perturbation-induced switching in a S2 × S2 × S1 state set. A sequence
of five perturbations driving the system through different states with symmetry S2 × S2 × S1
(τ = 0.49, ε = 0.025, I = 1.04, γ = 1). The phase of all oscillators are plotted at the
moment when oscillator number one is reset, each color representing the phase of one oscillator.
The apparent change of the phase differences among the clusters just after the perturbations
depends on the cluster to which the reference oscillator belongs. The symmetry of the unstable
attractors is preserved. The sequence of states corresponding to the plateaus are (a, a, b, b, c) →
(b, c, a, a, b) → (a, b, b, c, a) → (b, a, a, b, c) → (a, c, b, a, b) → (b, b, a, c, a).

element just after its reset makes it approaches the element that was put behind on the unstable
S2 cluster, forming a new stable S2 cluster. This occurs because it is reset by supra-threshold
pulses. Moreover, the element ahead begins to be reset by pulses and stops increasing its phase,
becoming stable and the original stable S2 cluster after changing its phase is no longer reset
by pulses, becoming unstable. The final state has the same symmetry and stability properties
as the former state.

The preservation of the symmetry implies a closed transition diagram among all the
possible S2 × S2 × S1 states (see figure 6). We state two simple equivalent switching rules.
Considering first a positive representation, we have

(a, a + δ2, b, b, c) → (c, b, a, a, b) (25)

that can be rewritten for negative perturbations simply as

(a − δ1, a, b, b, c) → (c, b, a, a, b). (26)

We conclude that for this symmetry the unstable attractors are linked to form a heteroclinic
network (figure 6), characterized by (25) and (26), forming a closed set of saddle periodic
orbits among which the systems switch in a controlled way upon small external perturbations.
We remark that in the absence of noise this dynamics does not exhibit spontaneous transitions
between nearby saddle states [12, 13] but instead displays convergence to unstable attractors.
The free dynamics of each element evolves continuously up to reset; still, the collective
dynamics of the entire network (network state) evolves continuously almost always, but
interrupted by discrete jumps due to the infinitely fast phase response of the interaction. As (i)
the transitions are fully controlled by external perturbations and thus predictable, and (ii) the
symmetry is preserved when the network is subject to sufficiently small, general perturbations,
arbitrarily small external noise, would trigger a persistent switching dynamics in which the
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Figure 6. Five steps state transition diagram for the symmetry S2 × S2 × S1. This diagram shows
all the possible 5-step paths, sequence of states, beginning on the state {a, b, c, b, a}. Each arrow
represents one of the two possible perturbations, subject to (25) and (26). At least 5 perturbations
are necessary to reach the initial state again.

network states are constrained to the closed set of periodic orbits with an initial S2 × S2 × S1

symmetry. A numerical example of this spontaneous switching phenomenon has been reported
before [17] for a system of N = 100 oscillators exhibiting S21×S21×S21×S21×S16 symmetry.

5. Discussion

In the networks of pulse-coupled oscillators studied above, three sets of heteroclinically
connected unstable attractors appear to have a well-defined symmetry that depends on the
network parameters. Interestingly, for two state symmetries, the possible switching transitions
markedly deviate from those in time-continuously coupled systems [19]. Moreover, all
attractors with the third symmetry S2 × S2 × S1 form one closed heteroclinic network, where
all possible transitions are predictable and depend on the precise direction of the perturbation.
In fact, mapping an arbitrary small perturbation to a single-oscillator perturbation, we derived
a general set of transition rules, (25) and (26). This last feature guarantees that there are no
changes of symmetry during the switching and precisely defines a transition diagram (figure 6)
that holds for all sufficiently small perturbations.

Thus, this work explicitly shows how nontrivial switching dynamics is induced and
precisely controlled by perturbations in pulse-coupled systems. Our analysis shows that
and how event sequences, collectively generated by the network, fully determine switching
transitions in pulse-coupled oscillators. Consequently, these results are not restricted to the
IF model (used here for numerical simulations and illustrating purposes) but equally hold
for different oscillator models with sub-threshold potential dynamics that are sufficiently
close to the one considered here. Moreover, the phenomenon should still hold qualitatively
for temporally extended responses as long as the post-synaptic response times are short
compared to the membrane time constant and inter-spike-interval times. Nevertheless,
although we expect the same transition possibilities, the dynamics without noise will show
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heteroclinic switching sequences that depend on the initial condition and do not require
external perturbations, cf [13]. As stability and instability of clusters reflect synchronizing
and desynchronizing mechanisms [20], here realized by supra- and sub-threshold inputs,
respectively, similar switching features also occur in networks of N � 6 pulse-coupled
oscillators [17].

Since the systems studied here are pulse-coupled and of hybrid type, with smooth time
evolution interrupted at discrete times of interactions, it is interesting to compare our results
to those systems of oscillators coupled continuously in time [6, 7]. The latter systems exhibit
partially synchronized saddle states with the same symmetry S2 × S2 × S1, where a persistent
switching dynamics appears as one feature of the model and, when subject to asymmetric
external currents, generates a wide variety of spatiotemporal patterns. Interestingly, the
transitions rules given by (25) and (26)—illustrated in figures 5 and 6—not only guarantee an
equivalent persistent switching dynamics when subject to noise, but also imply the existence
of the same set of spatiotemporal patterns when subject to asymmetric external currents as
well. Thus, our model characterizes exactly this switching dynamics in a pulse-coupled
neuronal framework, where the patterns can be described as distributed pulse sequences (spike
patterns). The importance of such a spiking representation becomes evident in particular
when considering potential applications to neural coding and information processing [7]. For
instance, studies on the olfactory system of insects [21, 22] have shown that biological systems
could use spatiotemporal spike patterns as part of their information processing. In particular,
our results agree with the interesting predictions of Hansel et al [2], Rabinovich et al [3]
and Timme et al [8] regarding the generation of spatiotemporal spike patterns based on a
switching dynamics. In addition, our work presents a neural system where the entire (long-
time) switching dynamics follows from a fixed set of transition rules, a promising feature that
may prove not only advantageous for computation in biological but also in artificial systems.

We remark that although the apparent equivalence between the dynamics of pulse-coupled
oscillators and continuously coupled oscillators works for this specific symmetry, it does not
hold as a general rule. The most pronounced counter-examples are systems with symmetry
S3 ×S2, which when smoothly coupled exhibit persistent switching dynamics, but when pulse-
coupled, any continuous small noise required for the switching necessarily drives the system
to a stable attractor, cf figure 2.

To understand how these switching properties may actually perform computational tasks,
a complete analysis of the effect of asymmetric currents, driving pulses and asymmetric
connections on the spike patterns is needed. The answer to these controlling factors could
bring us important information about alternative mechanisms of neural computation, both
biological and artificial.
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Appendix A. Partial derivatives

Here we present the analytical expressions for the Jacobian matrices presented in section 3.
Where we introduce a short notation Hy(x) → xy , for x ∈ {0, τ, (τ − τ ′), (τ − τ ′ + τ ′

y)} and
y ∈ {ε, 2ε, 3ε}
12
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A.1. S3 × S2. Nonzero elements for the Jacobian matrix (13)

α = [−1 + [1 + H ′
ε(τ )]H ′

ε(τε)]H
′
2ε(τ + τ2ε) (A.1)

β = [−1 + 2H ′
ε(τ )]H ′

ε(τε)H
′
2ε(τ + τ2ε) (A.2)

γ = [−1 + H ′
ε(0)]H ′

2ε(τ + 0ε) + H ′
ε(τε)H

′
2ε(τ + τ2ε) (A.3)

j21 = −[1 + [−2 + H ′
ε(τ )]H ′

ε(τε)]H
′
2ε(τ + τ2ε) (A.4)

j32 = j42 = [−1 + H ′
ε(τ )]H ′

ε(τε)H
′
2ε(τ + τ2ε). (A.5)

A.2. S4 × S1. Nonzero elements for the Jacobian matrix (17)

α = [−1 + [1 + H ′
ε(τ )H ′

ε(τε)]H
′
ε(τ2ε)]H

′
ε(τ + τ3ε) (A.6)

β = [−1 + [1 + H ′
ε(τ )]H ′

ε(τε)]H
′
ε(τ2ε)H

′
ε(τ + τ3ε) (A.7)

γ = [−1 + 2H ′
ε(τ )]H ′

ε(τε)H
′
ε(τ2ε)H

′
ε(τ + τ3ε) (A.8)

j31 = j21 = −[1 + [−2 + H ′
ε(τε)]H

′
ε(τ2ε)]H

′
ε(τ + τ3ε) (A.9)

j41 = −[−1 + H ′
ε(0ε)]H

′
ε(02ε) + [−1 + H ′

ε(τε)]H
′
ε(τ + τε) (A.10)

j42 = −[−1 + H ′
ε(0)]H ′

ε(0ε)H
′
ε(02ε) + [−1 + H ′

ε(τε)]H
′
ε(τ2ε)H

′
ε(τ + τ3ε) (A.11)

θ = −1 + H ′
ε(0)H ′

ε(0ε)H
′
ε(02ε) + [1 + [−1 + H ′

ε(τ )]H ′
ε(τε)H

′
ε(τ2ε)]H

′
ε(τ + τ3ε). (A.12)

A.3. S2 × S2 × S1. Nonzero elements for the Jacobian matrix (22)

λ1 = α = H ′
ε(τ

′ + (τ − τ ′ + τ ′
2ε)ε)[−1 + H ′

ε(τ − τ ′ + τ ′
2ε)[1 + H ′

2ε(τ
′)]], (A.13)

β = H ′
ε(0)H ′

ε(τ
′ + 0ε) + H ′

ε(τ
′ + (τ − τ ′ + τ2ε)ε)[−1 + H ′

ε(τ − τ ′ + τ ′
2ε)] (A.14)

γ = −[−1 + H ′
ε(τ − τ ′)]H ′

ε((τ − τ ′)ε)
+ H ′

ε(τ
′ + (τ − τ ′ + τ ′

ε)ε)[−1 + H ′
ε(τ − τ ′ + τ ′

2ε)]. (A.15)

Appendix B. Return maps

Here we explain step by step the periodic orbit dynamics described by the unperturbed return
maps that define the three main families of the attractors given in tables B1, B3, B4 and B6.
The event notation is the following: si indicates that oscillator i sent a pulse; ri indicates that
pulses were received coming from the oscillators indicated by i. The capital letters indicate
constants, Hε(φ) is the transfer function presented in section 1 and pi,j is a short notation for
the phase of oscillator i at event number j .

A realization of the dynamics described by these tables is presented for specific parameter
in tables B2, B5 and B7. As there are no approximations to the corresponding analytical

13



J. Phys. A: Math. Theor. 42 (2009) 345103 F S Neves and M Timme

Table B1. Analytic table of condition for an unperturbed S3 × S2 dynamics, S3 unstable.

Event
Event Time φ1, φ2, φ3 φ4, φ5 number

s1,2,3 0 0 A 0
r1,2,3; s4,5 τ H2ε(τ ) = p1,1 H3ε(A + τ) > 1 → 0 1
r4,5 2τ H2ε(p1,1 + τ) = p1,2 Hε(τ) = p4,2 2
s1,2,3 2τ + 1 − p1,2 1 → 0 p4,2 + 1 − p1,2 3

Table B2. Analytic prediction of phase dynamics for parameters τ = 0.31, ε = 0.025, I = 1.04
and γ = 1, realizing a S3 × S2 cycle.

Event
Event Time φ1, φ2, φ3 φ4, φ5 number

s1,2,3 0.000 000 0.000 000 0.501 612 0
r1,2,3; s4,5 0.310 000 0.353 450 0.000 000 1
r4,5 0.620 000 0.829 344 0.330 956 2
s1,2,3 0.790 655 0.000 000 0.501 612 3

Table B3. Analytic table of condition for an unperturbed S3 × S2 dynamics, S2 unstable.

Event
Event Time φ1, φ2, φ3 φ4, φ5 number

r(4,5); s1,2,3 0 0 C 0
r1,2,3 τ H2ε(τ ) = p1,1 H3ε(C + τ) = p4,1 1
s4,5 1 − p4,1 1 + p1,1 − p4,1 = p1,2 1 → 0 2
r4,5; s1,2,3 τ + 1 − p4,1 H2ε(p1,2 + τ) > 1 → 0 Hε(τ) 3

condition tables, the specific values completely agree with the iterated simulation in figures 1,
3 and 5.

B.1. Unperturbed S3 × S2 dynamics

The initial condition is such that no pulse was sent before time zero. At time zero, the first
event, oscillators 1, 2 and 3 fire (s123); the second event is the reception of these signals a
time τ later (r123), these are supra-threshold events to oscillators 4 and 5, which then send
a signal (s45) and are reset; the third event is the reception of pulses from 4 and 5 (r45);
and the last event is the reset of oscillators 1, 2 and 3 (s123) by reaching the threshold. For
any choice of the parameters resulting in A = p4,2 + 1 − p1,2 (while preserving the event
sequence), we have a period-one attractor, since the initial state is obtained after one pulse of
each oscillator. A numerical example of such a structure is presented in table B2. From this
map, we can conclude that the cluster S2 is stable, since any small variation will be restored
when its elements are reset together by the incoming pulse.
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Table B4. Analytic table of condition for an unperturbed S4 × S1 dynamics.

Event
Event Time φ1, φ2, φ3, φ4 φ5 number

s1,2,3,4 0 0 B 0
r1,2,3,4; s5 τ H3ε(τ ) = p1,1 H4ε(B + τ) > 1 → 0 1
r5 2τ Hε(p1,1 + τ) = p1,2 τ 2
s1,2,3,4 2τ + 1 − p1,2 1 → 0 τ + 1 − p1,2 3

Table B5. Analytic prediction of phase dynamics for parameters τ = 0.27, ε = 0.015, I = 1.1
and γ = 1, realizing a S4 × S1 cycle.

Event
Event Time φ1, φ2, φ3, φ4 φ5 number

s1,2,3,4 0.000 000 0.000 000 0.672 908 0
r1,2,3,4; s5 0.270 000 0.303 940 0.000 000 1
r5 0.540 000 0.597 091 0.270 000 2
s1,2,3,4 0.942 909 0.000 000 0.672 908 3

B.2. Unperturbed S3 × S2 dynamics, S2 unstable

This map describes the partner orbit of table B1, once they appear for the same range of the
parameter, but for different initial conditions. The initial condition here is that pulses from
oscillators 4 and 5 are received (r(4,5)) exactly at time 0, forcing oscillators 1, 2 and 3 to fire
(s1,2,3), what defines the first event; the second event is the reception of these pulses (r1,2,3) τ

time later; the third event is the reset of oscillators 4 and 5 upon reaching the threshold (s4,5),
and consequently the generation of two new pulses; the last event is the reception of these
pulses (r4,5), which causes oscillators 1, 2 and 3 to generate one pulse (s1,2,3). In this case, the
S3 cluster is stable, since any small variation on the phase of its components will disappear in
the next cycle when all are reset together by incoming pulses [10].

B.3. Unperturbed S4 × S1 dynamics

This map describes another period-one attractor, where no pulse was sent before time 0.
The first event is the signal sent by oscillators 1, 2, 3 and 4 (s1,2,3,4); the second event
is the reception of these pulses after τ time units (r1,2,3,4), which makes oscillator 5 to generate
one pulse due to a supra-threshold input (s5); the third event is the reception of this pulse at
time 2τ (r5); the last event is the pulse generation from oscillators 1, 2, 3 and 4 upon reaching
the threshold. If the event sequence is preserved, the condition B = τ + 1 − p1,2 follows
from the periodicity of the orbit. A numerical example of this orbit structure is presented in
table B5.
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Table B6. Analytic table of condition for an unperturbed S2 × S2 × S1 dynamics.

Event
Event Time φ1, φ2 φ3, φ4 φ5 number

s1,2 0 0 D E 0
r(3,4); s5 τ ′ H2ε(τ ) = p1,1 Hε(D + τ ′) = p3,1 H2ε(E + τ ′) 1

> 1 → 0
r1,2; s3,4 τ Hε(p1,1 + τ − τ ′) H2ε(p3,1 + τ − τ ′) H2ε(τ − τ ′) 2

= p1,2 > 1 → 0
r5 τ + τ ′ Hε(p1,2 + τ ′) = p1,3 Hε(p3,2 + τ ′) = p3,3 p5,2 + τ ′ = p5,3 3
s1,2 τ + τ ′ + 1 − p1,3 1 → 0 p3,3 + 1 − p1,3 p5,3 + 1 − p1,3 4

Table B7. Analytic prediction of phase dynamics for parameters τ = 0.49, ε = 0.025, I = 1.04
and γ = 1, realizing a S2 × S2 × S1 cycle.

Event
Event Time φ1, φ2 φ3, φ4 φ5 number

s1,2 0.000 000 0.000 000 0.381 978 0.795 680 0
r(3,4); s5 0.119 095 0.141 656 0.541 358 0.000 000 1
r1,2; s3,4 0.490 000 0.554 491 0.000 000 0.424 775 2
r5 0.609 095 0.748 191 0.130 168 0.543 870 3
s1,2 0.860 904 0.000 000 0.381 978 0.795 680 4

B.4. Unperturbed S2 × S2 × S1 dynamics

For this map, the initial conditions are such that pulses from oscillators 3 and 4 will be received
at time τ ′ after time 0. The first event is the pulse generation from oscillators 1 and 2 upon
reaching the threshold (s1,2); the second is the reception of pulses from oscillators 3 and 4
(r(3,4)) at time τ ′ and the pulse generation from oscillator 5 (s5) caused by this supra-threshold
input; the third event is the reception of the pulses from oscillators 1 and 2 (r1,2) at time τ that
forces oscillators 3 and 4 to elicit a pulse (s3,4); the forth event is the reception of the pulse
coming from oscillator 5 (r5); the last event is the pulse generation from oscillators 1 and 2
(s1,2) upon reaching the threshold. This map implies three periodic conditions to describe a
period-one attractor: D = p3,3 + 1 − p1,3, E = p5,3 + 1 − p1,3, and τ = 2τ ′ + 1 − p1,3. An
example of this structure is presented in table B7.

Appendix C. Perturbed dynamics, return maps

In this appendix, we present three tables that show the changes to the dynamics described
in tables B1, B4 and B6 due to an incremental perturbation δ = (0, δ2, δ3, δ4, δ5), where
0 < δ2 < δ3 < δ4 < δ5 � 1. In all cases without lose of generality, oscillator 1 was taken as
the referential phase to define the new cycle, since this does not affect the dynamics itself but
only the point of reference. The notation is the same as in appendix B.
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Table C1. Perturbed S3 × S2 dynamics.

Event
Event Time φ1 φ2 φ3 φ4 φ5 number

s1,(2,3) 0 0 δ2 δ3 A + δ4 A + δ5 0
r3 τ − δ3 Hε(τ − δ3) = p1,1a Hε(δ2 + τ − δ3) τ Hε(A + δ4 + τ − δ3) Hε(A + δ5 + τ − δ3) 1a

= p2,1a = p4,1a = p5,1a

r2; s4,5 τ − δ2 Hε(p1,1a + δ3 − δ2) p2,1a + δ3 − δ2 Hε(τ + δ3 − δ2) Hε(p4,1a + δ3 − δ2) Hε(p5,1a + δ3 − δ2) 1b
= p1,1b = p2,1b = p3,1b > 1 → 0 > 1 → 0

r1 τ p1,1b + δ2 = p1,1 Hε(p2,1b + δ2) = p2,1 Hε(p3,1b + δ2) = p3,1 Hε(δ2) = p4,1 p4,1 1
r4,5 2τ − δ2 H2ε(p1,1 + τ − δ2) H2ε(p2,1 + τ − δ2) H2ε(p3,1 + τ − δ2) H2ε(p4,1 + τ − δ2) p4,2 2

= p1,2 = p2,2 = p3,2 = p4,2

s3 2τ − δ2 + 1 − p3,2 p1,2 + 1 − p3,2 p2,2 + 1 − p3,2 1 → 0 p4,2 + 1 − p3,2 p4,2 + 1 − p3,2 3a
s2 2τ − δ2 + 1 − p2,2 p1,2 + 1 − p2,2 1 → 0 p3,2 − p2,2 p4,2 + 1 − p2,2 p4,2 + 1 − p2,2 3b
s1 2τ − δ2 + 1 − p1,2 1 → 0 p2,2 − p1,2 p3,2 − p1,2 p4,2 + 1 − p1,2 p4,2 + 1 − p1,2 3
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Table C2. Perturbed S4 × S1 dynamics.

Event
Event Time φ1 φ2 φ3 φ4 φ5 number

s1,(2,3,4) 0 0 δ2 δ3 δ4 B + δ5 0
r4; s5 τ − δ4 Hε(τ − δ4) Hε(τ + δ2 − δ4) Hε(τ + δ3 − δ4) τ Hε(B + δ5 + τ − δ4) 1a

= p1,1a = p2,1a = p3,1a > 1 → 0
r3 τ − δ3 Hε(p1,1a + δ4 − δ3) Hε(p2,1a + δ4 − δ3) p3,1a + δ4 − δ3 Hε(τ + δ4 − δ3) Hε(δ4 − δ3) 1b

= p1,1b = p2,1b = p3,1b = p4,1b = p5,1b

r2 τ − δ2 Hε(p1,1b + δ3 − δ2) p2,1b + δ3 − δ2 Hε(p3,1b + δ3 − δ2) Hε(p4,1b + δ3 − δ2) Hε(p5,1b + δ3 − δ2) 1c
= p1,1c = p2,1c = p3,1c = p4,1c = p5,1c

r1 τ p1,1c + δ2 Hε(p2,1c + δ2) Hε(p3,1c + δ2) Hε(p4,1c + δ2) Hε(p5,1c + δ2) 1
= p1,1 = p2,1 = p3,1 = p4,1 = p5,1

r5 2τ − δ4 Hε(p1,1 + τ − δ4) Hε(p2,1 + τ − δ4) Hε(p3,1 + τ − δ4) Hε(p4,1 + τ − δ4) p5,1 + τ − δ4 2
= p1,2 = p2,2 = p3,2 = p4,2 = p5,2

s4 2τ − δ4 + 1 − p4,2 p1,2 + 1 − p4,2 p2,2 + 1 − p4,2 p3,2 + 1 − p4,2 1 → 0 p5,2 + 1 − p4,2 3a
s3 2τ − δ4 + 1 − p3,2 p1,2 + 1 − p3,2 p2,2 + 1 − p3,2 1 → 0 p4,2 − p3,2 p5,1 + τ − δ4 + 1 − p3,2 3b

= p5,3b

s2 2τ − δ4 + 1 − p2,2 p1,2 + 1 − p2,2 1 → 0 p3,2 − p2,2 = p3,3c p4,2 − p2,2 p5,3b + p3,2 − p2,2 3c
= p5,3c

s1 2τ − δ4 + 1 − p1,2 1 → 0 p2,2 − p1,2 p3,2 − p1,2 p4,2 − p1,2 p5,3c + p2,2 − p1,2 3
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Table C3. Perturbed S2 × S2 × S1 dynamics.

Event
Event Time φ1 φ2 φ3 φ4 φ5 number

(s3,4); s1,(2)) 0 0 δ2 D + δ3 D + δ4 E + δ5 0
r3,4; s5 τ ′ H2ε(τ

′) = p1,1 H2ε(τ
′ + δ2) = p2,1 Hε(D + τ ′ + δ3) = p3,1 Hε(D + τ ′ + δ4) = p4,1 H2ε(E + τ ′ + δ5) 1

> 1 → 0
r2; s3,4 τ − δ2 Hε(p1,1 + τ − τ ′ − δ2) p2,1 + τ − τ ′ − δ2 Hε(p3,1 + τ − τ ′ − δ2) Hε(p4,1 + τ − τ ′ − δ2) Hε(τ − τ ′ − δ2) 2a

= p1,2a = p2,2a > 1 → 0 > 1 → 0 = p5,2a

r1 τ p1,2a + δ2 = p1,2 Hε(p2,2a + δ2) = p2,2 Hε(δ2) = p3,2 Hε(δ2) = p4,2 Hε(p5,2a + δ2) 2
= p5,2

r5 τ − τ ′ Hε(p1,2 + τ ′) = p1,3 Hε(p2,2 + τ ′) = p2,3 Hε(p3,2 + τ ′) = p3,3 p3,3 p5,2 + τ ′ 3
s2 τ + τ ′ p1,3 + 1 − p2,3 1 → 0 p3,3 + 1 − p2,3 = p3,4a p3,4 p5,2 + τ ′ + 1 − p2,3 4a

+1 − p2,3

s1 τ + τ ′ 1 → 0 p2,3 − p1,3 p3,3 + 1 − p1,3 p3,3 + 1 − p1,3 p5,2 + τ ′ + 1 − p1,3 4
+1 − p1,3
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